

EXAMINATIONS COUNCIL OF ESWATINI Eswatini General Certificate of Secondary Education

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
PHYSICAL SCI Paper 3 Practical				Ос	tober/Nov 1 hou	
Candidates ans Additional Mate			•	al Instructions.		
READ THESE I	NSTRUCTI	ONS FIRS	ST			
Write in dark blu You may use a	ue or black p HB pencil fo bles, paper o	oen. er any diag clips, highl	grams,	er and name on the spaces provided. graphs, tables or rough workings. s, glue or correction fluid.		
Answer all ques You may use an		calculator.				
The number of r	marks is giv	en in brac	kets [r working or if you do not use the appropria] at the end of each question or part questi printed on page 12.		

For Exam	iner's Use
1	
2	

Total

This document consists of 12 printed pages.

© ECESWA 2019 [Turn over

1 Caution: Wear goggles when heating and carrying out these experiments

You are provided with strips of two metals, ${\bf R}$ and ${\bf S}$ and iron nails.

(a)	Des	scribe the physical appearance of metals R and S .	
	R		
	S		[2]
(b)	You	will determine the order of reactivity of the metals R , S and iron.	
	(i)	Add about 5 cm ³ of copper(II) sulfate solution into two test-tubes.	
		Label the test-tubes A and B .	
		Add a strip of metal R into test-tube A and an iron nail into test-tube B .	
		Allow the test-tubes to stand for about 3 minutes.	
		Record your observations.	
		metal R	
		iron nail	[2]

(ii) Add about 2 cm³ of dilute hydrochloric acid into each of three test-tubes.

Label the test-tubes C, D and E.

Add a strip of **R** into test-tube **C**, a strip of **S** into test-tube **D** and an iron nail into test-tube **E**.

Record your observations in Table 1.1.

Table 1.1

metal	observation
metal R	
metal S	
iron nail	

כיו	1
เง	1
L۳	ı

(iii)	Arrange the three metals in their order of reactivity, starting with the most reactive.
	most reactive

(c) (i) You will determine the type of oxide that is produced by metal R.

Hold a strip of metal **R** with forceps and carefully ignite it using a Bunsen burner flame and collect the product as shown in Fig. 1.1.

Caution: Avoid looking directly at burning metal R.

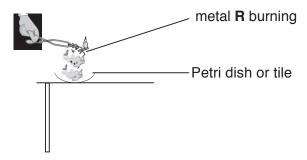


Fig. 1.1

	Record your observations.
	1
	2[2]
(ii)	Pour about 3 cm³ of water into a clean test-tube labelled F .
	Add the substance formed in (c) (i) into test-tube F and gently shake.
	The resulting solution is solution F .
	[Keep this solution for later use]
	Use a dropping pipette to remove a few drops of solution F .
	Test the pH of these few drops of solution F . Give a conclusion from the results.
	pH value
	conclusion[2]
(iii)	Describe how you tested the pH of solution F .
	[2]

(d)	Add	about 1 cm ³ of solution F into another test-tube, labelled G .
	Add	about 1 cm ³ of dilute hydrochloric acid into test-tube G . The resulting solution is G .
		be about 1 cm 3 of solution G into a crucible and heat it to dryness using a Bunsen her flame.
	(i)	Record the colour of the substance formed on the walls of the crucible.
		[1]
	(ii)	Name the type of reaction that has taken place.
		[1]
(e)	Plac	ce the remaining 1 cm ³ of solution G into another test-tube, H .
	Add	a few drops of aqueous sodium hydroxide.
	(i)	Record your observations.
		[1]
	(ii)	If the reaction had been carried out on a larger scale in a school laboratory, draw the apparatus that you can use to separate the substance formed.

(f)	State one precaution to be taken when handling acids.
	[1]

2 In this experiment you will investigate some factors that affect the strength of an electromagnet.

Fig. 2.1 shows the apparatus that has been set-up for you.

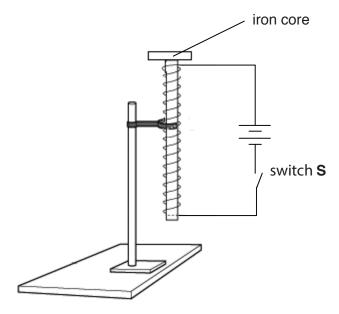


Fig. 2.1

(a) (i) Close the switch, S.

Attach one paper clip to one end of the electromagnet.

Bring a permanent magnet with its North Pole closer to the end of the paper clip, but not touching, as shown in Fig. 2.2.

Fig. 2.2

State your observation.

[1]

(ii) Now bring the South Pole of the magnet closer to the end of the paper clip, but not touching, as shown in Fig. 2.3.

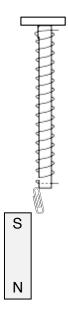


Fig. 2.3

	State your observation.	
	Switch off the circuit.	
(iii)	Deduce the polarity of the end of the electromagnet.	

- **(b)** Switch on the circuit.
 - (i) Attach one paper clip onto one end of the electromagnet.

Bring another paper clip to one end of the first paper clip such that it touches it as shown in Fig. 2.4.

Fig. 2.4

	Record and explain your observation.
	observation
	explanation
	[3]
(ii)	Keep adding paper clips.
	Record and explain your observations.
	observation
	explanation
	[2]

	(iii) Open switch, S.
	State and explain your observations.
	observation
	explanation
	[2]
(c)	Keep the number of turns at 30.
	Add one more cell in the circuit.
	Repeat the procedure in (b) (i) and (b) (ii).
	State and explain the effect of increasing the number of cells.
	[2]
(d)	Keep the number of cells the same.
	Replace the coil with a coil with 60 turns.
	Close switch, S .
	Repeat the procedure in (b) (i) and (b) (ii).
	Compare your results with those in (c).
	Explain your answer.
	comparison
	explanation
	[2]
(e)	Suggest one way of improving the accuracy of this experiment.
	[1]

(f) Fig. 2.5 shows an electromagnet.

Fig. 2.5

Design an experiment to show the magnetic field lines of the electromagnet.		
	[3]	

CHEMISTRY PRACTICAL NOTES

Test for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (<i>Cl</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminum foil; warm carefully	
sulfate (SO ₄ ²⁻) [in solution]	acidif, then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH ₄ +)	ammonia produced on warming	_
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint